
 CI/CD Pipeline Adoption using

Azure DevOps

The client’s flagship Property Management application gives property owners the ability to initiate service and

amenity requests with quick access to payments, title deeds, and buyer registration. However, their software

development life cycle process incurred release cycles that took several months to complete. The client wanted to

improve their code integration and build delivery mechanisms to optimize productivity.

Project Overview

Our client is a leading property development company based in the Middle East. The company provides property

development and management services across the Middle East, Asia, Europe, and North America.

Client Profile

We proposed a continuous integration, delivery, and deployment strategy for the project using Azure DevOps.

Collectively known as CI/CD, continuous integration, delivery, and deployment form an integral part of modern

development intended to reduce errors during integration and deployment while stepping up project velocity. The

CI/CD philosophy and practices are augmented by robust tooling capabilities that automate testing at each stage

of the software pipeline. By incorporating these practices, we were able to reduce time required to integrate

changes and test each change before moving into production.

Azure DevOps was selected as CI/CD platform because of the following factors:

Highly configurable pipeline

Availability of different cloud-based Mac machines with multiple Xcode versions

Availability of third-party plugins for integrations

Azure DevOps was already being used for project management

Our Solution

Conflict resolution due to delayed code integration cost the development team a significant amount of time

Creating builds for different environments was another challenge

The error-prone manual process involved multiple steps and led to mismatch in build number, environment,

and certificate

Business Challenges

Processes followed as part of each Pull Request (PR):

Static Code Analysis ‒ using Sonar Cloud (changes only)

Code Compilation ‒ on the incoming branch

Unit Testing ‒ on the incoming branch

 Each merge to develop branch triggers the following:

Static Code Analysis ‒ using Sonar Cloud (full)

Unit Testing ‒ develop branch

Build and sign ‒ develop branch using Fastlane

Upload artifacts ‒ for developer testing using Fastlane

Each merge to QA branch triggers the following:

Update QA configuration

Build and sign ‒ develop branch using Fastlane

Deploy application to QA environment using Fastlane

Share the build with QA team

Each merge to staging branch triggers the following:

Update staging configuration

Build and sign ‒ develop branch using Fastlane

Deploy application to staging environment using Fastlane

Share the build with staging team for Regression Testing and UAT Testing

Each merge to production branch triggers the following:

Update production configuration

Build and sign ‒ develop branch using Fastlane

Deploy application to production environment using Fastlane

Share the build with production team for Smoke testing

Implementing CI/CD pipeline ensured consistent and quality code. The Azure Pipeline also provided a quick, easy,

and safe way to automate builds, making them ready for use.

USA | UK | UAE | INDIA | SINGAPORE | AUSTRALIA | JAPAN

www.qburst.com | info@qburst.com

Tools and Technologies

Fastlane SonarQubeAzure DevOps

Pull Request

Dev Branch Merge

QA Branch Merge

Staging Branch
Merge

Production Branch
Merge

Static Code Analysis
SonarQube

Static Code Analysis
SonarQube

Update QA
Configuration

Update Staging
Configuration

Update Production
Configuration

Unit Testing

Unit Testing

Build and Sign
Fastlane

Build and Sign
Fastlane

Build and Sign
Fastlane

Build and Sign
Fastlane

Upload to Testflight
Fastlane

Upload to Testflight
Fastlane

Upload to Testflight
Fastlane

Upload to Testflight
Fastlane

Faster and reliable software delivery with value addition in terms of delivery quality and process efficiency

Significantly reduced effort by the development team in generating builds

Reduced dependency between QA team and development team with QA team also generating builds; hence

reduced delay

Reduced number of errors as a result of automation

Faster deployment and configuration of resources in a reliable and repeatable manner

Business Benefits

