Journey to Cloud Native

LEARNINGS & BEST PRACTICES

Opurst

CLOUD NATIVE: THREE AXES

v Utilize managed services
provided by the cloud provider

v Transition to a distributed,
loosely-coupled, microservices
architecture

v Adopt automation

CLOUD NATIVE

Managed Services

Microservices Automation

%2 CO
ﬁa\@/@

CLOUD NATIVE JOURNEY: KEY OBJECTIVES

FOCUS Reduce lead time for feature requests

DEVELOPMENT Agile, DevOps

DELIVERY CYCLES Continuous

ARCHITECTURE Loosely coupled, microservices-based modular architecture

INFRASTRUCTURE Container-driven, scalable horizontally on-demand, flexible
infrastructure

MOVING UP THE CLOUD NATIVE MATURITY MODEL (CNMM)

O

oJllo

Cloud
Services

Start using basic cloud

building blocks: Compute,

storage, networking,
monitoring.

Managed services:
Databases, caching,
directory services, load
balancers, data
warehouses, search.

Automation tools are
available as managed
services.

Use advanced services
such as serverless and
Al/ML services.

Application Design
Changes

Start with 12-factor app
design.

Make the application
cloud-ready by utilizing
basic cloud
features/managed services
(Lift and shift).

Convert Monolithic or SOA
architectures to MSA.

Use serverless and
event-driven approach
where required.

Make the application
cloud-optimized by utilizing
the power of cloud
managed services.

MOVING UP THE CLOUD NATIVE MATURITY MODEL (CNMM)

Adopt cloud native design
with built in instrumentation,
security, parallelization, and
resiliency.

Comprehensive monitoring
setup, CI/CD, Orchestration,
microservice architecture,
and use of cloud
infra/managed services.

MOVING UP THE CLOUD NATIVE MATURITY MODEL (CNMM)

Automation

Environment management

o Immutable
Infrastructure

Infrastructure as Code

O

o Configuration
management

o Cl/CD

Monitoring, compliance,
and optimization through
automation.

Al/ML: Predicting failures,
self-optimizing,
self-healing.

BUILDING A CLOUD LANDING ZONE

Ensure all services are configured
before deploying workloads.

Adopt cloud native engineering
and best practices to maximize
benefits.

Account structure design (master and
sub-accounts)

Virtual network design (create subnets, isolate
workloads and data)

Centralize shared services (logging, directory
services, auth services, monitoring, service
catalogs)

Security and audit requirements (logging
framework, configuration audit process,
snapshot of environment configuration at
specific intervals)

Set up an automation framework, Infrastructure
as Code

DEVELOPMENT

Develop or re-architect based on microservices architecture pattern

Make services stateless

Plan to utilize managed services such as RDS, Aurora, DynamoDB, and Redshift.
Take advantage of elasticity — instance count changes with load

Use serverless technologies such as AWS Lambda, Azure Functions, and Kinesis
Place business functions behind APIs

Automate tests — unit, APIs, acceptance

OPS

Plan for Immutable infrastructure

Build resilient services — if a service goes down, it should be easy to restart another one or
redirect traffic to a working instance

Infrastructure as Code (Terraform, AWS CloudFormation)
Deploy services/applications in containers

Use container orchestration tools such as Kubernetes, Swarm
Implement an automated CI/CD pipeline

Traffic management

Use techniques such as Blue/Green deployment

Find configurations drifts through automation

Tagging strategy: Use standardized tags and implement them consistently across resources

STORAGE

Storage lifecycle policy

Organize data based on attributes such as frequency-of-access and planned
retention period

Enforce retention policies using code (and OS properties, where possible)

Implement a cloud storage data aging management mechanism that tracks state of
data and moves it to a different cloud storage device or deletes it after a defined
lifecycle

Automate backup

SECURITY

Adopt DevSecOps approach

ldentity and Access management, detective controls, infrastructure and data protection
Implementation of logic-based security solutions with custom scripting and monitoring
Key/secret management

Ensure continuous monitoring and threat prediction with stacks such as ELK and OSSEC
Sensitive data encryption

Harden servers and containers

Environment/configuration drift detection

Use managed services such as web application firewall

Define cloud-based backup and disaster recovery strategy

COMPLIANCE & AUDITS

Architect the solution based on applicable security standards

Ensure inherent component level security, stronger interface security and resource life cycle
management

Create Compliance as Code framework to mitigate risks and facilitate smooth governance
Automated compliance: Automate audit checks
Logging

o Logging strategy

o Log centralization, correlating system and application level logs, dashboards

o Real-time analysis and alerts on streaming logs, to detect anomalies, intrusion, etc.

MONITORING

EXTERNAL
POLLING

White box monitoring: An
approach that detects
problems before they
become externally visible
and can provide
valuable information for
in-depth debugging.

CUSTOM METRIC
COLLECTION

Open source tools such
as Prometheus, that
integrate with
Kubernetes, are effective
in this space. It is a
monitoring and alerting
toolkit that stores
metrics with a
multi-dimensional time
series database.

CENTRALIZED
LOGGING

ELK stack: Components
offer a set of open
source tools for log
storage, collection, and
visualization
respectively.

REQUEST
TRACING

Enables end-to-end
visibility across
microservices - Jaeger
and Zipkin.

UNDERSTANDING THE BIG PICTURE

Having the three axes in place is critical to the success of a cloud native journey
Transition to cloud native should be driven by business needs

Adopt cloud native engineering and best practices to maximize benefits

The ability to deploy to production quickly and efficiently is an undeniable advantage

Adopt a cloud native security platform that integrates reporting and compliance

Streamline your journey to cloud native with us

Experience in AWS, Azure and Google Cloud platforms

Experience in migrating applications from various hosting solutions to public clouds
Proven expertise in cloud managed services

Experience in developing and managing microservices-based applications
Experience in delivering DevOps services

Certified cloud security consultants

