
Email: bdg@qburst.com | Website: www.qburst.com

An Analysis of Cask Data Application Platform

November 2014

Building Big Data Applications

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Contents

Introduction .. 3

Cask Data Application Platform .. 4

About CDAP ... 4

Platform Stack ... 4

Creating a New Application .. 7

Collecting .. 7

Processing ... 7

Storing ... 9

Querying .. 9

HTTP REST API ... 11

Operating Modes .. 12

Pros and Cons .. 13

Cask Coopr .. 14

About Coopr .. 14

Architecture .. 16

Conclusion ... 17

References .. 18

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Introduction
This white paper attempts to review the Cask Data Application Platform (CDAP) and introduce the
reader to the open-source cluster management software, Cask Coopr. The aim is to provide detailed
information about the functionality of CDAP, explaining the platform stack and how the data and
application virtualizations are used to develop Big Data applications. To better understand the utility
of this tool, both the data and application virtualizations are exemplified with code snippets from a
real application scenario.

Finally, the paper documents a list of advantages and disadvantages observed while developing an
end-to-end application from a real dataset of energy disaggregation, using CDAP as the main
programing framework and environment.

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Cask Data Application Platform
About CDAP

As established in the official documentation, CDAP is “Virtualization for Hadoop Data and Apps.” [1]

“CDAP brings virtualization to Hadoop data and applications. CDAP provides data virtualization by
creating logical representations of data in datasets, and provides application virtualization through
standardized containers with runtime services.” [2]

CDAP provides two types of virtualizations.

Data Virtualization

This type of virtualization, as established by Cask, offers “logical representations of physical data as
CDAP datasets within the CDAP runtime environment.” [3]

The key features are:

 Streams for data ingestion.

 Reusable libraries for common Big Data access patterns.

 Data availability to multiple applications and different paradigms.

Application Virtualization

The application virtualization allows the “applications to be deployed as CDAP containers within the
CDAP runtime environment.” [4]

Application virtualization provides the following features:

 Integrated transactions and ingestion capabilities; processing engines that provide partitioning,
ordering, and one-time execution.

 Full development lifecycle and production deployment.

 Standardization of application across programing paradigms.

CDAP makes use of four basic abstractions:

 Streams for real-time data collection from any external system.

 Flows for performing elastically scalable, real-time stream or batch processing.

 Datasets for storing data in simple and scalable ways without worrying about details of the
storage schema.

 Procedures for exposing data to external systems through stored queries.

Platform Stack

The platform stack of CDAP provides a clear distinction between infrastructure components and
application code. Primarily, it works as a middle-tier application, providing simple, high-level
abstractions to gather, process, store, and query data.

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Figure 1: Cask’s Data Virtualization Architecture [3] (Source: Cask.co)

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Figure 2: Cask’s Application Virtualization Architecture [4] (Source: Cask.co)

Everything starts with Streams; Streams are in charge of collecting logs while Flows perform basic
aggregation and real-time analysis. For more advanced aggregation, MapReduce jobs and Workflows
are used. In fact, Workflows are used to execute a series of MapReduce jobs. Procedures are the
main abstraction to query data. A more detailed explanation of each of these abstractions can be
found in the following sections.

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Creating a New Application

Let us try to understand the functionality of CDAP and its main abstractions in the context of a real
application scenario.

Consider the problem of collecting, processing, storing, and querying data from energy
disaggregation datasets, which contain values of low frequencies per device per second from a set of
houses. [5]

It is important to note that CDAP uses Builder-like methods to create and configure applications. The
following code creates and configures our sample application.

public class Application extends AbstractApplication {

 @Override

 public void configure() {

 setName("EnergyDisaggregation");

 setDescription("Energy disaggregation datasets analysis

using Cask CDAP

 addStream(new Stream("lowFreqStream"));

 createDataset("lowFreqTimeTable",

TimeseriesTable.class);

 addFlow(new LowFreqFlow());

 addProcedure(new LowFreqProcedure());

 }

}

This code extends from the AbstractApplication class, specifying the application metadata as well as
declaring and configuring each of the application elements (name and description). Overriding the
configure method, we can add Streams, create Datasets, and add Procedures.

Collecting

In order to inject data from external systems, CDAP makes use of Streams. Streams are specified in
the application metadata as:

addStream(new Stream("lowFreqStream"));

The names used for Streams should be unique across CDAP as they are shared with all existing
applications. Streams can be created programmatically through the management dashboard or using
the command line.

Processing

Flows

Flows conform to Flowlets, which are the basic units in a Flow. Together, they build a directed acyclic
graph. Flowlets pass data objects between one another and each of them is able to perform
individual data operations. Flows offer ACID operations.

Given below is the implementation of the main Flow of the example application.

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

public class LowFreqFlow implements Flow{

 @Override

 public FlowSpecification configure() {

 return FlowSpecification.Builder.with()

 .setName("LowFreqFlow")

 .setDescription("Analyze low frequencies")

 // Processing logic is written in Flowlets

 .withFlowlets()

 .add("parser", new

LowFreqParseFlowlet())

 // Wire the flowlets into a DAG

 .connect()

 // Data that is sent to the Stream is

sent to the parses Flowlet

 .fromStream("lowFreqStream").to("parse

r")

 .build();

 }

}

As you can see, the name, description (with or without Flowlets), and connections are defined
before building the Flow itself.

Flowlets

Flowlets are the basic building blocks of a Flow and represent individual processing nodes within a
Flow. Flowlets receive data objects as input. They can then execute data operations to finally emit
data objects, if desired.

public class LowFreqParseFlowlet extends AbstractFlowlet{

 public static final String HOUSE_COLUMN = "house";

 public static final String DEVICE_COLUMN = "device";

 @UseDataSet("lowFreqTimeTable")

 private TimeseriesTable lowFreqTimeTable;

 // Annotation indicates that this method can process

incoming data

 @ProcessInput

 public void process(StreamEvent event) throws

ChangedCharSetException {

 Map<String,String> headers = event.getHeaders();

 String houseColumn = headers.get(HOUSE_COLUMN);

 String deviceColumn = headers.get(DEVICE_COLUMN);

 String lowFreqRow =

Charsets.UTF_8.decode(event.getBody()).toString();

 String[] lowFreqData = lowFreqRow.split("\\s+");

 lowFreqTimeTable.write(new

TimeseriesTable.Entry(Bytes.toBytes(houseColumn+":"+devic

eColumn),Bytes.toBytes(lowFreqData[1]),Long.valueOf(lowFr

eqData[0])*1000));

 }

}

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

The above code belongs to the main Flowlet class of the sample application; the class extends from
the AbstractFlowlet. When a StreamEvent is injected, it is processed by extracting the body and in
this case, creating a time-series Table.

There are many additional options to configure Flowlets, such as processing handlers with the same
name or sending additional information about input data. For a deeper explanation of these
concepts, please review the official documentation.

Storing

Datasets are in charge of storing and retrieving data. They provide higher-level abstractions, and
generic and reusable common data patterns. These abstractions allow the users to easily perform
data storage operations, avoiding the utilization of low-level APIs. The core Dataset is a Table. These
Tables are optimized for efficient storage of semi-structured data, different schemas, or sparse data.

CDAP provides a set of useful Datasets such as key/values, indexed Tables, and time-series Tables,
which is the one we have used in the sample application. Creation of custom datasets is also
possible, when needed.

Querying

Procedures are the abstractions in charge of querying and retrieving results from Datasets. They
make synchronous calls to CDAP from external systems. A Procedure implements and provides an
API, requiring a name and a set of arguments to query the data.

Here is the implementation of the getDailyDeviceComparison handle. It performs a daily comparison
between the devices of the Datasets, determining which ones spend more and which ones less.

 @Handle("getDailyDeviceComparison")
 public void getDailyDeviceComparison(ProcedureRequest

request, ProcedureResponder responder) throws IOException,

ParseException {

 int device = 0;

 String end = request.getArgument(END_DATE_ARG);

 String house = request.getArgument(HOUSE_ARG);

 if(end == null) {

responder.error(ProcedureResponse.Code.CLIENT_ERROR,

UNSPECIFIED_END_DATE);

 return;

 }

 else if(house == null) {

responder.error(ProcedureResponse.Code.CLIENT_ERROR,

UNSPECIFIED_HOUSE);

 return;

 }

 // Parse Begin date

 SimpleDateFormat dateFormat = new

SimpleDateFormat(DATE_FORMAT);

 Date endDate = dateFormat.parse(end);

mailto:bdg@qburst.com
http://www.qburst.com/
http://docs.cask.co/cdap/current/en/developers-manual/index.html

Email: bdg@qburst.com | Website: www.qburst.com

 long time = endDate.getTime();

 List<List<TimeseriesTable.Entry>> deviceEntries = new

ArrayList<List<TimeseriesTable.Entry>>();

 for(int i=0;i<DEVICES_HOUSE_1.length;i++) {

 List<TimeseriesTable.Entry> tableEntries =

lowFreqTimeTable.read(Bytes.toBytes(house+":"+DEVICES_HOUSE_1[i

]), time - TimeUnit.MILLISECONDS.convert(1, TimeUnit.DAYS),

time);

 deviceEntries.add(tableEntries);

 }

 Map<String,Object> lowFreqMap;

 List<Map<String,Object>> lowFreqMaps = new

ArrayList<Map<String, Object>>();

 for(List<TimeseriesTable.Entry> entries :

deviceEntries) {

 lowFreqMap = new TreeMap<String, Object>();

 double freqSum = 0;

 int freqSize = 0;

 for(TimeseriesTable.Entry entry : entries) {

 freqSum = freqSum +

Double.valueOf(Bytes.toString(entry.getValue()));

 freqSize++;

 }

 if(freqSize > 0) {

 lowFreqMap.put(DEVICE_ARG,

DEVICES_HOUSE_1[device]);

 lowFreqMap.put(FREQUENCY, (freqSum /

freqSize));

 }

 else {

 lowFreqMap.put(DEVICE_ARG,

DEVICES_HOUSE_1[device]);

 lowFreqMap.put(FREQUENCY, 0.0);

 }

 lowFreqMaps.add(lowFreqMap);

 device++;

 }

 // Send response in JSON format

 responder.sendJson(ProcedureResponse.Code.SUCCESS,

lowFreqMaps);

 }

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

HTTP REST API

One of the best ways to interact with CDAP is using the HTTP REST API. It offers interfaces to
accomplish a multitude of tasks. Given below is a brief description of the main uses of the API and
the most common calls used in the sample application.

Stream

It supports the creation of Streams, as well as sending and reading of events.

Dataset

With the Dataset calls, you can list, create, delete, and truncate Datasets.

Query

The Query interface allows you to execute SQL queries over Datasets in asynchronous mode. The
structure of a query should be sent as a JSON string.

{ "query": "<SQL-query-string>" }

Procedure

The Procedure interface allows you to call the methods of the application’s Procedures.

CDAP Client

Used to deploy or delete applications and manage the lifecycle of Flows, Procedures, MapReduce
jobs, Workflows, and Custom Services.

Logging

You can use the Logging interface to download the logs generated by an application.

Metrics

The Metrics interface can be used to check the metrics gathered during the execution of
applications.

Monitor

The Monitor interface provides a way to inspect the status of the system services used by CDAP.

Example Calls

Inject one record:
curl -X POST -d "1303132930 225.57" --header "Column: mains"

http://localhost:9999/v2/streams/lowFreqStream

Get a specific record:
curl -X GET --header "Column: mains"

http://localhost:9999/v2/tables/lowFreqTable/rows/1303132930

Truncate a dataset:
curl -X POST

http://localhost:9999/v2/streams/lowFreqStream/truncate

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Execute a procedure:
POST

http://localhost:9999/v2/apps/EnergyDisaggregation/procedures/Low

FreqProcedure/methods/getDailyLowFreq

Operating Modes

CDAP can be operated in three different modes. In our example application, we have explored the
standalone mode.

In memory

This is generally used while running CDAP unit tests. In this mode, the underlying Big Data structure
is emulated using in-memory data structures.

Standalone

The local mode provides a fully operational CDAP, emulating the Big Data infrastructure on top of
the local file system. The CDAP binds only to the local host, and hence is not available for remote
access.

Distributed Data Application Platform

The distributed data application platform runs in a fully distributed mode. It also provides a
distributed and highly available Hadoop infrastructure.

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Pros and Cons

Pros

Cons

Since CDAP offers an infrastructure solution,
there is no need to spend time looking for
applications and configuring them individually.
The time to start working on the application
itself is way shorter than working with individual
sets of tools.

CDAP offers data and application abstractions.
However, based on our example, we believe that
for more complex and custom scenarios, it would
be better to use the classic approach of handling
the data and tools individually, instead of
abstractions.

CDAP provides simple data APIs to virtually
perform all the actions required–development,
production, monitoring, and maintenance. The
HTTP API offers a very easy way to expose the
data from CDAP.

The set of Tables provided lack advanced
processing methods such as filtering. We noticed
this while using the time-series Table, which
offers a very simple scan method.

It provides different operating modes. So, it is
possible to develop an application using the
standalone mode and deploy it using the fully
distributed mode to get full performance and
scalability.

While injecting data into the platform, the web
application showed a very low response.

The use of well-defined abstractions to handle
the collection, processing, storage, and querying
reduces the complexity and length of the code
involved.

It is useful to have reusable libraries for common
Big Data access patterns. In our example, we
used the time-series Table, which provided
structure and methods that fitted our scenario.

The web application provides very useful tools
to track operations involved in collecting,
analyzing, storing, and querying data. It offers a
dashboard and monitors to track the behavior of
applications.

It is very easy to load and run a new application
using the web application.

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Cask Coopr
About Coopr

As stated by the creators, the Cask Coopr provides “Clusters with a click.” [6]

 “Cask Coopr is a cluster management software that manages clusters on public and private clouds.
Clusters created with Coopr utilize templates of any hardware and software stack, from simple
standalone LAMP-stack servers and traditional application servers like JBoss, to full Apache Hadoop
clusters comprised of thousands of nodes. Clusters can be deployed across many cloud providers
(Rackspace, Joyent, and OpenStack) while utilizing common SCM tools (Chef and scripts).” [7]

Main Cask Coopr systems are:
 Server
 Provisioner
 UI

Server

The Server stores and manages metadata around providers, services, and cluster templates. It
exposes and handles the web services supported by Cask Coopr.

Provisioners

The Provisioners take queued tasks and execute them. Once the tasks are completed, the
Provisioners report the task status back to the Server.

UI

The UI has two main views: Admin and User. The Admin UI allows system administrators to configure
providers, disk images, machine hardware types, and software services.

The User UI permits the creation of instances of clusters from the available cluster templates. The
user has the ability to perform create, delete, amend, update, and monitor operations.

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Figure 3: Cask’s Coopr Workflow [6] (Source: Cask.co)

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Architecture

Figure 4: Cask’s Coopr Architecture [7] (Source: Cask.co)

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Conclusion
CDAP introduces a new approach to Big Data application development, making use of data and
application abstractions instead of individually handling the underlying data and technologies
involved.

We discovered that CDAP enables existing teams to start creating Big Data applications faster. This is
because the virtualizations provided negate the need for learning the complexities of each
technology. Teams can also focus more on solving business challenges, as they do not need to invest
a lot of time learning the tools involved.

However, we believe that for very specific and custom scenarios that require advanced
functionalities and complex data operations, it would be better to use the classic approach of
accessing data and using tools individually.

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

References
[1] Cask (2014). Cask Data Application Platform. http://cask.co/products/#cdap

[2] Cask (2014). CDAP Whitepaper. http://docs.cask.co/collateral/current/cdap-whitepaper-1.0.0.pdf

[3] Cask (2014). Cask Data Application Platform. Data Virtualization. http://cask.co/products/#cdap

[4] Cask (2014). Cask Data Application Platform. App Virtualization. http://cask.co/products/#cdap

[5] REDD (2011). The Reference Energy Disaggregation Dataset. http://redd.csail.mit.edu/

[6] Cask (2014). Cask Coopr. http://cask.co/products/#coopr

[7] Cask (2014). Cask Coopr Architecture.
http://docs.cask.co/coopr/current/en/overview/architecture.html

This document is published for educational purposes only. All trademarks, service marks, trade names, product names
and logos appearing in this document are the property of their respective owners. QBurst is not liable for any
infringement of copyright that may arise while making this document available for public viewership. If you believe that
your copyright is being violated, please contact us promptly so that we may take corrective action.

mailto:bdg@qburst.com
http://www.qburst.com/
http://cask.co/products/#cdap
http://docs.cask.co/collateral/current/cdap-whitepaper-1.0.0.pdf
http://cask.co/products/#cdap
http://cask.co/products/#cdap
http://redd.csail.mit.edu/
http://cask.co/products/#coopr
http://docs.cask.co/coopr/current/en/overview/architecture.html

