
Development
Design applications with
Microservices architecture

Place business functions
behind APIs

Use stateless services and event-
driven approach

Automate tests - unit, API,
acceptance

Take advantage of autoscaling—
automatically adjust resources

Utilize managed services such as
RDS, Aurora, DynamoDB, and
Redshift.

Build resilient services to ensure
auto-redundancy

Use serverless technologies such
as AWS Lambda and Azure
Functions

Benefit from multiple data centers
to ensure business continuity

Infrastructure

Storage
Establish a storage
lifecycle policy

Organize data based on attributes
such as frequency-of-access
and planned retention period

Enforce retention policies using
code (and OS properties, where
possible)

Implement a cloud storage data
ageing management mechanism

Automate backup

Security
Adopt DevSecOps approach

Architect the solution based
on applicable security standards

Implement logic-based security
solutions with custom scripting

Encrypt sensitive data

Harden servers and containers

Use managed services such as web
application firewall

Integrate application security testing
into CI/CD

Define cloud-based backup and
disaster recovery strategy

Monitoring
Ensure continuous monitoring and
threat prediction with stacks such as
ELK and OSSEC

Automate detection of
environment/configuration drift

Create compliance as code
framework and automate audit
checks

Use white box monitoring methods in
addition to external polling

Adopt tools such as Prometheus to
monitor a wide variety of custom
metrics

Track all related requests with
request tracing tools such as Jaeger

Operations
Maintain infrastructure as code using
tools such as AWS CloudFormation

Plan for immutable
infrastructure

Automate code
deployment pipeline

Deploy services/applications
in containers

Use orchestration tools such as
Kubernetes, Swarm

Best Practices for Building

Cloud-Native Apps

