
Taking a Cloud-Portable Approach in a

Multi-Cloud World

Taking a Cloud-Portable Approach in a Multi-Cloud World 02

www.qburst.com

Table of Contents

Introduction

Cloud-Agnostic Approach

Cloud-Portable Approach

Service Portability

Platform Portability

Implementing Object Storage Portability

References

The Advantages of Cloud-Portable Approach

Cloud-Native Approach

Exploring the Layers of Cloud Portability

Storage Portability

Conclusion

03

04

04

06

07

07

04

03

05

05

12

11

Introduction

Migrating to the cloud offers numerous benefits, including scalability, cost efficiency, and access to advanced
technologies. However, building infrastructure on a public cloud introduces certain risks, with vendor lock-in
being a primary concern. This risk arises when businesses become overly dependent on a single cloud
provider, making it challenging and time-consuming to switch providers if needed. Such transitions can span
months or even years, exacerbating concerns about flexibility and control.

Operating across multiple cloud environments presents technical challenges and often comes with significant
costs. To address these issues, the cloud-portable approach emerges as a strategic solution.
Cloud portability allows organizations to design and build their infrastructure in a way that is not tightly
coupled to any single cloud provider. By adopting a cloud-portable approach, companies can take full
advantage of cloud-native services and their unique benefits while maintaining the flexibility to operate across
diverse cloud environments. This strategy minimizes the risks associated with vendor lock-in, enabling
seamless navigation of multi-cloud environments without incurring excessive costs or technical debt.

Taking a Cloud-Portable Approach in a Multi-Cloud World 03

www.qburst.com

Cloud-Native Approach

Cloud-native technologies empower organizations to build and run scalable applications in modern, dynamic
environments such as public, private, and hybrid clouds. Containers, service meshes, microservices,
immutable infrastructure, and declarative APIs exemplify this approach.

Benefits Challenges

Vendor lock-in Faster development

Cost-effectiveness

Cloud-Agnostic Approach

The cloud-agnostic approach entails designing and developing applications and infrastructure to operate
seamlessly across diverse cloud platforms, minimizing dependency on any single provider’s services or APIs.
This strategy focuses on creating a flexible and adaptable architecture that enables interoperability among
various cloud environments.

Benefits Challenges

Maintenance complexity

Demands technical expertise

Loss of native benefits

High initial investment

Portability

Cost-effectiveness

Flexibility

Cloud-Portable Approach

Migrating applications between cloud providers can be highly complex and labor-intensive, often
necessitating extensive code refactoring and tool replacements.

Embracing cloud portability allows organizations to leverage cloud-native services while ensuring
transformative agility and efficiency. Businesses can seamlessly migrate and interoperate across various
cloud environments—private, public, or multiple providers by decoupling applications, workloads, and data
from cloud-specific dependencies. This strategic approach facilitates smooth transitions, fosters innovation,
and future-proofs IT infrastructures, ensuring resilience and competitiveness.

For example, with a cloud-portable architecture, transitioning an application from AWS to GCP can be
executed swiftly and with minimal disruption, requiring only minor coding modifications. This smooth
process is made possible by abstractions and tools designed to abstract away cloud-specific details,
facilitating a frictionless migration experience.

The primary objective of the cloud-portable approach is to simplify and streamline the transition process
between cloud environments, thereby mitigating the inherent challenges and complexities. Organizations
can significantly enhance their flexibility, minimize disruptions, and maintain adaptable and resilient IT
infrastructures amidst a dynamic and evolving cloud landscape by adopting cloud-portable strategies and
tools.

Taking a Cloud-Portable Approach in a Multi-Cloud World 04

www.qburst.com

The Advantages of Cloud-Portable Approach

Vendor Independence

Switch between cloud providers as needed,
avoiding vendor lock-in.

Risk Mitigation

Mitigate the risk of service outages and cost
overruns that come with relying too heavily on
a single cloud provider.

Speed-to-Market

Leverage pre-existing, cloud-native managed
services instead of building time-consuming
custom infrastructure.

Negotiation Advantage

Strike strategic partnerships with vendors for
pricing and service benefits.

Balanced Approach

Leverage the strengths of cloud-native services
while maintaining platform portability.

Budget-Friendliness

Invest in one-time development
of abstraction layers and minimize ongoing
maintenance costs.

Exploring the Layers of Cloud Portability:
Storage, Service, and Platform

Understanding the different layers of cloud portability—storage, service, and platform—is essential to
building a resilient and adaptable cloud strategy. Each layer offers unique challenges and opportunities,
enabling seamless transitions and integration across multiple cloud environments.

This section will explore these layers in detail, illustrating how each contributes to a comprehensive
approach to cloud portability.

Taking a Cloud-Portable Approach in a Multi-Cloud World 05

www.qburst.com

Storage Portability

As businesses adopt cloud-native solutions, the choice of storage technology plays a crucial role in
application architecture. Different types of cloud storage - such as document stores, object storage, and
graph databases - offer unique advantages, but they come with platform-specific APIs and capabilities.
While these services enhance scalability and performance, they can create dependencies that make it
difficult to adopt a multi-cloud strategy. To ensure portability, organizations can adopt strategies that
minimize tight coupling to a specific provider. These strategies include using standardized APIs,
implementing abstraction layers, or leveraging query languages that work across multiple platforms.

The following sections provide examples of the storage portability approach across cloud environments.

Document Storage Portability

For organizations needing a globally distributed, scalable document database, Azure Cosmos DB is a popular
choice. Its flexibility and multi-region replication ensure low-latency access across geographies. However,
using Cosmos DB’s core API tightly integrates applications with its ecosystem, making migration difficult.

To avoid vendor lock-in, organizations can adopt a more portable approach by leveraging the Cosmos DB’s
MongoDB API instead of the native Core API. It allows applications to use standard MongoDB commands.
This ensures compatibility with other MongoDB-based databases like MongoDB Atlas and AWS DocumentDB,
simplifying future migrations.

Object Storage Portability

Cloud-native storage services like Azure Blob Storage, AWS S3, and Google Cloud Storage each have their
unique APIs and features, which can lead to vendor lock-in if applications are built directly on top of them.
This lock-in makes it challenging to switch providers or maintain consistency across multiple cloud
environments.

To address this issue, implementing an abstraction layer over these cloud-native APIs is a practical solution.
An abstraction layer serves as a middle layer between the application and the specific storage services,
providing a uniform interface to interact with any object storage system. By using this common interface,
developers can write code that is independent of the underlying storage provider. This means that if there's a
need to switch from AWS S3 to Azure Blob Storage, for example, the changes required in the application code
are minimal, as the abstraction layer handles the specifics of each service.

For more details, refer to the section: Implementing Object Storage Portability with Abstraction.

Taking a Cloud-Portable Approach in a Multi-Cloud World 06

www.qburst.com

Service Portability

Service portability enables organizations to move their workloads between different cloud
environments with minimal disruption. It provides the flexibility to operate services across multiple
clouds, allowing for seamless cloud migration, better workload management, and reduced vendor
lock-in.

Below are a few examples of how service portability can be achieved across various cloud platforms.

Message Queuing Portability

Message brokers like Azure Service Bus, AWS SQS, and GCP Pub/Sub offer robust messaging solutions.
However, directly integrating your applications with a specific broker can limit portability. To avoid this,
frameworks like MassTransit, Celery, Dapr, or custom abstraction layers can be used to decouple
messaging logic from specific services. This allows for easy transitions between message brokers,
ensuring minimal code changes and maintaining consistent messaging behaviour across platforms.

Serverless Function Portability

Serverless functions provide highly scalable and cost-efficient architectures but can become tied to a
specific cloud provider. Using a tool like the Serverless Framework, developers can abstract their serverless
functions from platform-specific code. This allows functions to be easily deployed and moved between
providers like Azure Functions, AWS Lambda, and GCP Cloud Functions, offering flexibility in deployment
while reducing the risk of vendor lock-in.

Container Orchestration Portability

Kubernetes is a powerful orchestration tool that enables portability for containerized applications. It is
cloud-neutral, allowing the same Kubernetes configurations to be used across platforms such as Azure
Kubernetes Service (AKS), AWS Elastic Kubernetes Service (EKS), and Google Kubernetes Engine (GKE).
This makes it easy to deploy, scale, and manage container workloads across different cloud environments
with minimal modification, ensuring consistent operations across multiple clouds.

Graph Storage Portability

Graph databases power complex relationships and connections, but choosing a vendor-specific solution
can limit flexibility. A common strategy for ensuring portability in graph storage is using Gremlin, a widely
adopted graph traversal language within the Apache TinkerPop framework. Standardizing graph queries on
Gremlin keeps application logic consistent across databases like Amazon Neptune, Azure Cosmos DB
(Gremlin API), and Apache TinkerGraph.This allows companies to switch from one provider to another -
such as migrating from Cosmos DB to Amazon Neptune - without rewriting queries from scratch. With
minimal adjustments, existing traversal logic can be maintained, reducing time and effort in database
migration.

Taking a Cloud-Portable Approach in a Multi-Cloud World 07

www.qburst.com

Platform Portability

Platform Portability enables applications to operate effortlessly across multiple cloud environments—like
AWS, Azure, and Google Cloud—without requiring significant changes. Achieving true platform portability
requires integrating several components: multi-cloud Infrastructure as Code (IaC), portable CI/CD pipelines,
and portable storage and service layers.

Tools like Terraform and Pulumi allow infrastructure to be defined in a way that works consistently across
different cloud providers. This approach lets you provision and manage resources across AWS, Azure, GCP,
and other clouds using the same code base.

Additionally, the ability to decouple services and abstract storage solutions, as outlined in storage and
service portability, ensures that both data and workloads can move smoothly between clouds. By building
on these layers, organizations can achieve higher flexibility and ensure that migrations between clouds are
efficient, reducing downtime and complexity. The better integrated these layers are, the more seamless and
efficient the overall platform migration process will be.

Implementing Object Storage Portability with Abstraction:
A Pseudo-Code Example
To ensure portability across cloud platforms, it is important to abstract object storage services such as
Azure Blob Storage, AWS S3, or Google Cloud Storage. By creating an abstraction layer, you can switch
between different providers without changing the core business logic.

Below is a pseudo-code example illustrating how object storage abstraction can be achieved, using
InversifyJS as the IoC container. This example focuses on managing object storage (blobs) in a way that
allows flexibility across different cloud platforms.

Note: The pseudo-code is for illustration and may not compile or work.

Step 1: Define a Custom Interface for Object Storage
The first step is to create a custom interface, packaged and deployed as a private package. This package
encapsulates a generic abstraction tailored for object storage, named IObjectStore. This abstraction
includes method signatures relevant to the storage functionality required.

iobjectstore.ts

Once the interface is ready, concrete implementations for Azure Blob Storage and AWS S3 are created as
individual classes. These classes comply with the predefined method signatures of the IObjectStore interface
and manage the storage functionalities of each cloud platform.

Taking a Cloud-Portable Approach in a Multi-Cloud World 08

www.qburst.com

Step 2: Implement Cloud-Specific Classes
Now, create concrete implementations for Azure Blob Storage, AWS S3 adhering to the IObjectStore
interface. These classes will encapsulate the logic for interacting with each cloud provider’s storage
service.

azureblobstorage.ts

Taking a Cloud-Portable Approach in a Multi-Cloud World 09

www.qburst.com

awss3storage.ts

Taking a Cloud-Portable Approach in a Multi-Cloud World 10

www.qburst.com

Step 3: Integrate Abstraction into Core Business Logic
Now that the concrete implementations for Azure Blob and AWS S3 are ready, the core business logic can
be built on top of the IObjectStore interface. This ensures that the business layer remains agnostic to the
underlying cloud platform.

In this example, the SampleBusiness class operates on the generic IObjectStore interface, allowing it to work
with any storage implementation—whether it be Azure Blob Storage, AWS S3, or another object storage
service. The specific implementation is injected at runtime, making the core business logic portable.

samplebusiness.ts

Taking a Cloud-Portable Approach in a Multi-Cloud World 11

www.qburst.com

Step 4: Configure IoC Container for Dependency Injection
Finally, the specific object storage service is chosen based on the environment or other runtime configurations,
managed by the IoC container.

With this setup, SampleBusiness will remain unaware of the underlying cloud platform (Azure or AWS) during
execution. The IoC container ensures appropriate storage implementation is injected based on the
configuration.

This abstraction pattern allows object storage portability across cloud platforms by decoupling the core
business logic from cloud-specific services. Using interfaces and dependency injection, the system can switch
between Azure Blob Storage, AWS S3, or even Google Cloud Storage with minimal changes to the application
logic, promoting greater flexibility and reducing vendor lock-in.

iocsetup.ts

Conclusion

Embracing cloud-portable approach allows organizations to leverage cloud-native services while ensuring
transformative agility and efficiency. By decoupling applications, workloads, and data from cloud-specific
dependencies, businesses can seamlessly migrate and interoperate across various cloud environments—
private, public, or multiple providers. This approach facilitates smooth transitions and fosters innovation,
ensuring resilience and competitiveness.

Implementing a cloud-portable approach necessitates expertise and the ability to address various
bottlenecks. This document outlines these approaches, and it is crucial to either develop in-house expertise or
engage a seasoned service provider to ensure effective implementation.

Taking a Cloud-Portable Approach in a Multi-Cloud World 12

www.qburst.com

References

Gartner. (2023, November 29). Gartner says cloud will become a business necessity by 2028. [Press
release]. https://www.gartner.com/en/newsroom/press-releases/2023-11-29-gartner-says-cloud-will-
become-a-business-necessity-by-2028

IBM. (2020, October 20). Cloud portability and interoperability. https://www.ibm.com/blogs/think/fi-fi/
2020/10/20/cloud-portability-and-interoperability/

IBM. (n.d.). Multicloud strategy is the order. https://www.ibm.com/think/insights/multicloud-strategy

Unnikrishnan, K. (2023, December 22). Cloud-portable approach: Striking a balance between flexibility and
managed services. https://blog.qburst.com/2023/12/cloud-portable-approach-striking-a-balance-
between-flexibility-and-managed-services/

Unnikrishnan, K. (2024, January 10). Cloud portability part 2: Implementing a cloud-portable solution.
https://blog.qburst.com/2024/01/cloud-portability-part-2-implementing-a-cloud-portable-solution/

© Copyright 2025, QBurst. All rights reserved. This document is published for educational purposes only. All other trademarks, service

marks, trade names, product names, and logos appearing in this document are the property of their respective owners. QBurst is not

liable for any infringement of copyright that may arise while making this document available for public viewership. If you believe that

your copyright is being violated, please contact us promptly so that we may take corrective action.

