
Microservices-based 
Digital eCommerce Platform  

Developed Java Spring Boot microservices hosted on Kubernetes 

cluster as an orchestration layer for the web and mobile app. 



Project Overview

The digital eCommerce platform comprises a Single Page Application and a Mobile App with microservices 

architecture forming the backend. Microservices, based on Java Spring Boot were implemented for 

merchandising, costing, and inventory platforms. This provided the information for the frontend. REST API 

calls were used to communicate with each microservice and this was handled by the BFF layer (Backend 

for Frontend). 

One of the main advantages of our code is that it can be easily configured for different regions and brands. 

Using the same codebase, we deployed the system in eight countries for three different brands. The code 

can also be customized with features specific to one country.

Performance testing revealed that our solution was able to handle twice the load when compared to the 

previous year. Being a global retail player, implementing Microservices resolved their biggest problems 

related to expansion and scaling of their IT systems, while bringing in flexibility and agility.

Client

Our client is one of Asia’s largest clothing retailers with over 2500 stores 

across the globe.  

Business Requirement

Our client used multiple third party systems for order management with individual deployments in regions 

such as Canada, China, and the United States. They faced several challenges with the existing system.

The client wanted to replace the existing system with an in-house, global order management system.

Lack of scalability

High dependency on vendors for implementation across geographies

Costly outages during festive seasons

Solution

The microservices-based architecture provides the foundation for the digital eCommerce solution, 

comprising over 20 platforms that cater to all the functions of the EC store. Following is an overview of the 

main ones developed:

Order Fulfillment: Core, Basket, Payment, Inventory, Order History, Cost, and Sales

Frontend: CMS, SPA, Web and Mobile BFF  

Customer: Account, Coupon, Newsletter, Analytics, Catalog

Store: Customer Support, Order Management, POS, and Reporting



Each microservice has its own database and specific job processing batches. Additionally, all microservices 

are interconnected with/dependent on many other microservices in the system and are connected through 

Rest APIs. Microservices associated with the previous platform had to be deprecated and integrated with 

the new system.

The following diagram portrays a high-level structure of the microservices and the communication flow with 

different user interfaces (mobile/web app, admin panel).

The Order Fulfillment module consists of multiple microservices (built-in Spring Boot running on EKS) each 

having its own narrow and focused responsibilities: 

Cart microservice for eCart related functions

Order microservice for order placement and returns

Payment microservice for payment-related functions

Inventory microservice for inventory and related functions

Cost microservice for storing product pricing and related details

Sales microservice manages the sales data and provides information that can be used for various analysis 
and accounting classification 

Redis Redis Redis Redis



Load Balancers: There are internal and external load balancers available between the BFFs and microservices 

for efficient distribution of traffic. For external load balancing, separate load balancers are used for consumer 

and admin traffic.

API Gateway: APIs are channeled through a designated API gateway to ensure API authentication, monitoring, 

security, and sessions/logs. Separate API gateways for consumers and admin are used to channel requests 

from consumers and administrators.

All user interfaces are connected with these microservices through a proxy layer — BFF specific to each 

interface. The BFF layer orchestrates/merges internal APIs from multiple microservices. This layer ensures:

The admin application serves as an operational tool or portal for the client to manage the digital commerce 

platform. It facilitates collaboration between support teams and customers, visibility into transactions, and 

integration between platforms and payment systems. The application serves as a portal for all internal operations 

such as management of Order, Inventory, Account, Payment, and Shipment.

Enhanced security — client-side applications do not have a direct connection with the microservices as all 

requests pass through the proxy layer

Proxy layer caching helps to cache the results of aggregated calls, preventing similar requests from 

reaching the microservices multiple times

From the proxy layer, tailored APIs are developed for each interface

ct Name Color

Grey 26-28 420 350

Size Length Customization Coupon Code Rate After Discount Price Type

Check Order Information

Home

Order Fulfillment

Search

List Requests

Return Management

Search

Download

Inventory Management

Search

Upload

Search Products

Download

Confirmed Stock 1 0

Booking Location Stock Type Booking No. Stock Order Date Number Replenish No. Exchange No. Transfe

Edit

The stock system is designed to manage eCommerce platforms, distribution centers, and stores. The system 

supports inventory inquiry, provisional inventory booking, real booking, and transfer operations. It interacts 

with the catalog system for item information and with warehouses to import stock information.



The progress of operations for each order received is centrally managed by the order fulfillment module. Order 

status can be checked by the client using the admin app and by customers through the eCommerce site.

The cost system enables calculation of the product prices by applying predefined business rules. It includes a 

data adapter, merchandise service for product definition, and tax lookup service. 

Sales microservice manages the sales data that can be used for various analysis and accounting classification. 

It manages who, when, where, which brand, what, sales/returns/cancellations in the smallest unit that can 

be analyzed.

We developed the customer frontend as a Single Page Application using React as the JavaScript framework 

because of its flexibility and speed. SPA comprises the main application where we combine components such 

as buttons, links, and images as well as CSS together with business logic. Packages employed include 

Webpack, TypeScript, React-Router, Redux, and Redux-Saga. Different platforms, served by microservices, 

maintain their own application individually and provide the information to be displayed in the frontend 

interface. For example, the cost system stores prices of products, while merchandising system stores product 

details such as name, size, and color of the product. 

Within the system, we implemented a rolling deployment strategy for our ECS clusters that scale to 200%. 

This means, for each new change, the system scales up 200%. Newly created containers are exposed to 

custom health checks, after which the old containers are removed. Along with this, we run the entire cluster on 

two sets of ASGs (Auto Scaling Groups). The ECS cluster (underlying hardware) is scaled out based on CPU 

requirements, after which, each ECS service (the software) is scaled out based on the performance of the 

system. This facilitates quick and automatic scaling during peak times while running at a bare minimum during 

low traffic.

Highlights

Distributed caching layer (Redis) stores a copy of data fetched from the database and other microservices, 

reducing the number of expensive API/database calls, and improving performance

Query optimization and replacement of certain libraries with those having lower processing costs 

improved response time

Optimal use of in-memory data to avoid repetitive calls to database

Asynchronous processing of orders ensures stability during spikes in demand

Server-side rendering for a few pages helped cache data and display results faster 

Management of orders, settlement, shipment/receipt

Return control

Linkage with inventory, payment, sales, and accounting platforms

The core module caters to multiple warehouses while handling communications and emails to customers. 



USA | UK | UAE | INDIA | SINGAPORE | AUSTRALIA | JAPAN

www.qburst.com | info@qburst.com

Benefits

Performance testing revealed that the eCommerce system was able to handle twice the load compared to 

the previous year

Ability to handle up to a million requests per hour 

Solution deployed across geographies by enabling features location-wise

Sales of a seasonal product increased six times in a single day

Increased control over inventory

Significant cost savings with in-house solution when compared to the older system

Technologies

Java 11

Maven

PHP

PostgreSQL

Flyway

Spring Boot

Node

Kubernetes

Docker

React/Redux-Saga

Spring Batch

Golang

Redis

Kafka


