
Header

Content 1

Content 2

UX with Progressive rendering

Frontend Optimization
Tips for Improving the Performance of
Single Page Applications

QBURST

01. Module-Wise Page Loading

Lazy loading helps keep the initial bundle size smaller and improve load time. Split the CSS, JS

files into module-specific chunk files. Prioritize above-the-fold content and load the minimum

HTML, CSS, and JavaScript to quickly display the visible portion of the page to users while

deferring the render of remaining resources.

Apply CSS styles first to mobile devices. You can add advanced styles and overrides for

larger screens into the stylesheet using media queries. As mobile styles are less

complicated than those for desktop, a mobile-first approach helps simplify your

CSS code.

02. Mobile-First CSS

03. JS Optimization

Splitting the JavaScript code and bundling it

into different modules is a sure step toward

reducing JS payload. Analyze these bundles

to detect and remove unused libraries. By

minifying JS and loading only the most

important resources first, initial page load

time can be reduced. Third-party scripts such

as for analytics can be delayed and

loaded later.

04. Optimizing Images

When using images, choose the optimal

format. SVG, PNG, JPEG, font icons—all have

their own use case. Upload compressed

images and set limits for image size without

compromising quality. Prioritized and page-

specific image loading is another way to

reduce loading delays. By loading low-quality

images first and then replacing them with

better versions as the page continues to load,

you can progressively load images to speed

up the page.

05. Caching

The browser’s HTTP cache is an effective approach to loading resources faster avoiding

unnecessary network requests. However, to avoid stale content from being served to users from

the cache, you could implement filename or file path versioning.

07. HTTP/2 Connection

Make sure all the assets are served over

HTTP/2. If you have to, migrate to HTTPS first

and then switch to HTTP/2 protocol that

allows for multiplexing and prioritization.

08. API Cache

API caching is a mechanism to store and

retrieve data from the cache rather than hit

the backend server on each network request.

This can avoid the delay in request-response

and improve performance.

09. Pagination of Data

Pagination is a process to divide the

response data based on the application

required to process it. You need not fetch all

the data at a time. This will help reduce the

entire API size, rendering and parsing data

in smaller chunks.

10. Compressing Files

Reducing file size using compression

algorithms can cause a significant

improvement in page performance. Tools

such as gzip are supported by most of the

popular browsers and can be used

without worry.

06. Reusable CSS

As per the latest SPA component structure, you can define CSS for global purposes or a

particular section. If a style is to be applied throughout the app, you can write it as

reusable CSS and avoid multiple declarations. This will help reduce the overall CSS

bundle size.

USA | UK | UAE | INDIA | SINGAPORE | AUSTRALIA | JAPAN

www.qburst.com | info@qburst.com

