
Email: bdg@qburst.com | Website: www.qburst.com

Lambda Architecture

Near Real-Time Big Data Analytics Using Hadoop

January 2015

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Contents

Overview ... 3

Lambda Architecture: A Quick Introduction ... 4

Batch Layer .. 4

Serving Layer ... 4

Speed Layer ... 4

The Case for Lambda Architecture ... 5

Case Study: Application for Sentiment Analysis in Social Media .. 6

Conclusion ... 10

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Overview
In a nutshell, data architecture deals with physical and logical models/paradigms that govern data
management, storage, and processing. The initial phase of Big Data implementation is not about
decisions regarding Big Data infrastructure. Research on data warehousing and analytics options will
have to be supplemented by at least a peripheral grasp of how underlying data architecture and
processing methodology work. A successful implementation relies on well-defined business
requirements, which in turn influence the choice of infrastructure and architectural design. The
resulting data model is obtained by combining various tools and techniques that cater to your
unique use case.

Nathan Marz had worked for Twitter and Backtype, where he gained considerable experience with
distributed data processing systems. He is also associated with the open-source tool Storm. Inspired
by the foremost concern for high latency in distributed systems, Marz and his team proposed
Lambda Architecture. It was intended as an alternative that fuses properties of both batch and
stream processing. In simple terms, Lambda Architecture outlines a generic structure to build fast,
scalable, fault tolerant, and maintainable Big Data solutions.

Speaking of data architecture, it is impossible to strike a “one-size-fits-all/many” use-cases posture.
This white paper is an attempt to contextualize the concepts underlying Lambda Architecture
through its application in building data systems that seek to marry high latency and near real-time
processing.

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Lambda Architecture: A Quick
Introduction
The Lambda Architecture design comprises batch layer, serving layer, and speed layer. In simple
terms, batch layer stores the immutable growing master dataset on which it generates precomputed
views, though with high latency. The marked difference of speed layer from batch layer is the low
latency with which it produces real-time views. This layer performs incremental updates and
generates views on latest entries rather than the entire dataset.

Source: www.mapr.com

Batch Layer

The batch layer contains the immutable, constantly growing master dataset stored on a distributed
file system such as HDFS. With batch processing (using MapReduce), arbitrary views (or batch views)
are computed from this raw dataset. Hadoop is a typical example of a batch layer tool.

Serving Layer

The job of the serving layer is to load and expose the batch views in a datastore so that they can be
queried. This serving layer datastore does not require random writes – but must support batch
updates and random reads – and can therefore be extraordinarily simple. ElephantDB and
Voldemort are examples of datastores of this type.

Speed Layer

This layer deals only with new data and compensates for the high latency updates of the serving
layer. It leverages stream processing systems (Storm, S4, Spark) and random read/write datastores
to compute the real-time views (HBase). These views remain valid until the data have found their
way through the batch and serving layers.

mailto:bdg@qburst.com
http://www.qburst.com/
http://www.google.com/url?q=http%3A%2F%2Fwww.mapr.com&sa=D&sntz=1&usg=AFQjCNEwqQPvqVQRuy1p1omEdYYjPS1Elw

Email: bdg@qburst.com | Website: www.qburst.com

To get a near real-time result, the batch and stream processing views must be queried and the
results merged together.

The Case for Lambda Architecture
NoSQL and relational databases are much discussed in connection with Big Data analytics.
Components which work in parallel and complement each other are assembled to store and process
large volumes of unstructured data to ensure consistency and availability. Hadoop cluster is an
example of this arrangement.

Hadoop is highly scalable: if a cluster's processing power is overwhelmed by growing volumes of
data, additional cluster nodes can be added to maintain throughput. Hadoop clusters are also
equipped to handle consistency issues since each piece of data is copied onto other cluster nodes;
this ensures that data is not lost even if a node fails. This process is called data replication.

However, frameworks such as Hadoop and other vendor market software are just components of Big
Data infrastructure. The effectiveness of Big Data solutions depends highly on the robustness of
underlying data architecture.

Lambda Architecture aims to serve applications which perform asynchronous transformation
operations such as data mining, query execution, sorting, merging, or aggregating datasets. In simple
terms, asynchronous transformations create a new memory buffer for the output as compared to
the input during ETL execution. This is so because the output may have more or less records than
input data depending on the operation.

As a Big Data paradigm, Lambda Architecture collates batch and stream processing frameworks to
address the following requirements:

 Historical and real-time computation
 A robust system equipped to handle fault tolerance
 Low-latency reads and writes on large volume of data while supporting ad hoc queries
 Linear scalability to handle unlimited data by adding more nodes to the database
 Capacity to debug the system with minimal maintenance

Batch and serving layers ensure fault tolerance, scalability, ad hoc queries, and debugging, thanks to
the immutable input master dataset and output view. Batch layer also facilitates availability through
data replication across multiple nodes. The tradeoff is a latency of a few hours while batch and
server layers generate precomputed views and load indexed data for querying.

Speed layer is a real-time data system that compensates for this latency. Through incremental
updates, the speed layer continually modifies the real-time view instead of imitating the batch layer
which recomputes the entire dataset to accommodate newer entries. In other words, speed layer
addresses the latency issue resulting from reprocessing.

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Case Study: Application for Sentiment Analysis in Social Media

This application is a web-based analytics tool that monitors sentiment trends, influencers, and
related information about sports celebrities from social media platforms.

Use Case

 The application ingests streaming tweets to Flume for batch processing and a custom source
called Twitter Source for stream processing.

 The scalable and immutable dataset is stored and processed in Hadoop (batch layer).
 The final application displays sentiment analysis and top influencers.

Technologies

 Apache Flume
 HBase (Hadoop)
 MapReduce (Hadoop)
 MongoDB
 Redis
 Zookeeper

Integration Layer: Ingestion and processing of large amounts of data is done using Flume. Apache
Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and
moving large amounts of log data.

In this application, Flume is used to stream and filter Twitter data on sports celebrities. This data is
stored in HBase. Flume achieves this by defining streaming Twitter API data into sources, channels,
and sinks.

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Batch Layer: Hadoop has been used as the batch layer. HBase manages the data received from the
Flume service, while MapReduce performs the computation. MapReduce reads the tweets from the
HBase table and performs entity recognition based on the entities present in the lookup table. It
then calculates the sentiments of the tweets and passes the result onto a grouping parameter, which
matches sentiments that correspond to each celebrity.

It stores the last-run timestamp into the distributed configuration store when the job is successful.
On the next run, the job only picks up rows that have changed since the saved timestamp. This
removes any duplicate entries and prevents stale data from making its way into the serving layer.

ZooKeeper is a centralized service used for maintaining configuration information and naming,
besides providing distributed synchronization and group services. In this instance, Zookeeper
distributes the configurations among all nodes for batch layer processes. The last runtime of the
batch process is stored in Zookeeper.

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Serving Layer: MongoDB is a schema-less NoSQL database that acts as the serving layer in this
application. It processes the partial aggregate of results from the batch layer (influencers, popularity,
and tweet mentions) into hourly, weekly, and monthly time buckets. In the serving layer, results
from the batch layer and real-time output from the speed layer are merged to display an indexed
compute view.

Speed Layer: Fast retrieval of the latest tweets and their geographical location is performed in the
speed layer. This layer performs stream processing on data drawn from Twitter API and Twitter
stream within the limits of Firehose. Redis is the in-memory database used to store new data that
streams in the interval occurring due to high latency batch processing. The processes in the speed
layer are iterative. The data stored in Redis is cleared once updated in the batch layer, to take up the
latest data streamed from Twitter.

Users can get a historical view that displays a change in values over a period of 90 days, which
includes the latest tweets from a celebrity, and the sentiment calculated for each sportsperson. The
geographic location of the latest tweets are displayed in map view.

Using the web application, the end user can see the trends in celebrity popularity, sentiments, and
mentions. Here are a few graphs that show the change in these values over a 24-hour period.

Number of mentions charted against timestamp

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Popularity chart of a day

Sentiment trend with an interval of 3

mailto:bdg@qburst.com
http://www.qburst.com/

Email: bdg@qburst.com | Website: www.qburst.com

Conclusion
Lambda Architecture handles ETL operations by archiving unstructured data and performing data
mining on enormous volumes of immutable datasets through batch processing. It also performs low
latency stream processing. If a part of your application relies on fast delivery of results to the tune of
milliseconds, while another part caters to long-term operations such as predictive analytics, then
Lambda Architecture would be ideal.

The hybrid architecture also maintains an immutable master dataset. Despite a well-conceived data
architecture design, Big Data processing systems need to be equipped for ‘human fault tolerance.’
Human mistakes such as introducing bugs in codes accidentally could create errors in aggregate
writes. An immutable master dataset makes recovery from such human mistakes much easier.

One trade-off is that batch processing and stream processing require you to maintain and debug two
different sets of codes. This trade-off is also a double-edged sword, while the above argument holds
good in terms of codes, the system also allows for running two different logics in stream and batch
processing layers. For instance, the logic in stream processing can track near real-time fraud
detection while the latter can run a code to put in place a more complex fraud detection system.

Ultimately, the question whether advantages or trade-offs outweigh the other is best answered by
examining your specific business use case with experienced data architects.

Copyright © QBurst 2015

mailto:bdg@qburst.com
http://www.qburst.com/

