
Building a

Centralized 
Microservices-based 
E-commerce Platform
for a Global Fashion Retail Chain



Overview
The project involved a comprehensive transformation of a leading 
global fashion retail company’s E-commerce (EC) platform, which 
previously operated on disparate third-party systems across various 
countries. The key challenges included poor vendor control, high 
licensing and change request costs, performance issues, and lack of 
timely rollouts. QBurst partnered with the client to build a centralized, 
microservices-based platform, streamlining processes, improving 
performance, and significantly reducing costs.

Our solution focused on transitioning from third-party systems such as 
Demandware and Magento to an in-house platform, optimizing the 
catalog, Order Management Systems (OMS), and ensuring robust 
integrations with other critical business systems like Inventory 
Management System (IMS) and Warehouse Management Systems 
(WMS). The microservices-based architecture allowed the platform to 
scale effortlessly as business demands grew, supporting multiple 
countries from a single, centralized system.

Client Profile

A leading fashion retail 
company that owns several 
brands and operates across 
diverse markets.

Business Challenges
The client relied on different e-commerce solutions in each country. 
This led to inconsistent customer experiences, increased maintenance 
efforts, and operational challenges.



Solution Highlights
1. Microservices architecture

We built a robust microservices architecture to replace the disparate 
systems. Key microservices included:

Account microservice: Centralized account management for 
multiple countries.

Catalog microservice: A critical API for retrieving product data and 
inventory information.

QBurst Solution
We designed and implemented a microservices-based architecture that 
enabled the client to take control of their e-commerce platform. We 
helped transition from third-party systems to an in-house solution, 
moving critical operations such as account management, catalog, and 
order management to microservices that could scale seamlessly 
across multiple countries.

Delayed rollouts: New features and bug fixes were not rolled out 
on time, leading to lost revenue opportunities.

Data ownership: The client did not have full ownership of their e-
commerce data, particularly customer and order data, which was 
managed by third-party vendors.

Performance and scalability: The existing systems struggled to 
handle peak traffic during major events, causing frequent 
downtimes and poor customer experiences.

Limited vendor control: The client lacked control over third-party 
vendors managing the applications, limiting flexibility and 
responsiveness to business needs.

High license and change costs: The cost of maintaining third-
party platforms was significant. Even small change requests (CRs) 
were expensive and time-consuming.



2. Data migration

Account data migration: We migrated account data from third 
party systems using a streamlined process:

Data was exported in XML format, compressed into .gz files, 
and stored in an AWS S3 bucket.
The migration process involved converting the XML files to a 
database format and performing integrity checks before moving 
the data to the new account system.

Order data migration: We implemented a two-tier data migration 
process for order history:

Recent data was migrated to a PostgreSQL database (hot 
storage) for quick access, while older data remained in a legacy 
datastore (cold storage).
A Kafka migrator continuously transferred legacy data to the 
PostgreSQL database, ensuring real-time access to historical 
order data.

3. OMS integration 

The OMS was integrated with the client’s IMS and WMS using APIs 
and ETL (Extract, Transform, Load) processes for real-time data 
synchronization. We also implemented asynchronous processing for 
OMS batch jobs to enhance performance.

These microservices were designed to be modular, scalable, and easily 
integrated with both internal and third-party systems.

OMS microservice: Handled orders and integrated with the client’s 
inventory and warehouse management systems.

4. Catalog performance enhancements

The catalog platform was heavily optimized for performance, given its 
high volume of API requests:



5. Order data access optimization

We implemented a streamlined process for retrieving user order 
histories:

When a user requests order history, the system first queries the 
PostgreSQL database for recent records.

If data is insufficient, it queries the legacy datastore and merges the 
results.

A Kafka pipeline continuously migrates older order history into 
PostgreSQL, progressively improving performance over time.

Concurrent queries: API queries were executed concurrently to 
speed up response times, and complex calculations were handled 
by batch workers to avoid delays in real-time API responses.

API caching: API responses were cached to minimize database 
queries. During peak traffic hours, the caching time was 
dynamically adjusted to handle large volumes of requests.

Denormalization: Key data in the database was denormalized to 
improve access speed, further reducing query time.

In-memory caching: Master data, which changes infrequently, was 
stored in in-memory caches (Redis), avoiding unnecessary 
database joins.

6. Performance enhancements in OMS

To improve the performance of the OMS during peak sales hours, 
several optimizations were made:

In-memory basket data store: We migrated basket data from 
PostgreSQL to an in-memory solution, reducing data retrieval time 
from 2 seconds to under 10 ms during cart updates.

ElasticSearch integration: Price data was migrated from 
PostgreSQL to ElasticSearch to optimize frequent price lookups, 
drastically improving response time and reducing database load.



7. Front-end optimization

Server-Side Rendering (SSR): Pre-rendered pages on the server 
to improve load time, enhance SEO, and reduce delays for users on 
slow connections.

Lazy loading: Implemented lazy loading for non-essential 
resources like images and videos, improving initial page load times.

Resource compression: Utilized modern formats such as WebP to 
compress images and reduce file sizes, further enhancing 
performance.

Database sharding and partitioning: Implemented sharding to 
distribute data across multiple database nodes, improving system 
scalability and performance during high transaction volumes.

Database query optimization: Indexes were added to frequently 
queried fields, reducing query execution time from 200 ms to 20 
ms, improving batch processing performance by 70%, and 
lowering peak CPU usage by 40%.

Asynchronous logging: We refactored the logging system to be 
asynchronous, with failover support, reducing main process 
overhead and improving API response time by 30%.

Technologies



www.qburst.com info@qburst.com

Achieved flexibility to quickly introduce new features and 
improvements, reducing delays in rolling out updates and capturing 
revenue opportunities more effectively.

Delivered a consistent and superior shopping experience across all 
countries through enhanced platform optimizations like SSR, lazy 
loading, and resource compression, resulting in improved load time 
and smoother user experiences.

Optimized system architecture resulted in faster response time, 
better handling during peak traffic, and a reduction in downtime, 
ensuring seamless scalability and improved performance during 
high-demand events.

Gained full control over the e-commerce platform, enabling faster 
decision-making and real-time access to critical business data, 
improving operational efficiency and responsiveness.

Business Benefits
Reduced licensing costs and eliminated expensive change request 
fees by transitioning to an in-house platform, providing significant 
cost savings and minimizing vendor dependency.


