
Telematics-enabled
Remote Diagnosis Solution

Telematics helps to improve after-sales service by providing manufacturers with real-time access to
vehicle data. Telematics enables transmission of information from an automobile’s electronic control
unit to a data center. The Remote Diagnosis Application is a diagnostic tool developed for telematics-
enabled vehicles. Technicians use the diagnosis application to check the overall health of the vehicle.
Data analysis of snapshots helps technicians to identify and fix faults. The application receives data
from a host of services such as the vibration analysis application (uses in-built sensors to detect fault
sources), accelerometer, gyrometer, GPS, and street drive simulations.

The Remote Diagnosis Application radically simplifies the inspection and diagnosis process by
providing technicians with an insightful pocket diagnostic tool.

Overview

Based in Europe, our client is the research and development center for one of the world’s largest
manufacturers of premium and commercial vehicles. The center focuses on research, IT engineering,
and product development.

Client Profile

Previously, each workshop was assigned a diagnostic kit, a large wired device that was connected to the
vehicle for scanning and recording vehicle data. The client required a mobile application that would
replace this system and enable technicians to diagnose and analyze faults in cars and trucks remotely.

Business Case

AUTOMOTIVE TELEMATICS MARKET TO REACH USD 415.93 BILLION BY 2027

CAGR OF 26.4%: EMERGEN RESEARCH

PWA App

Microgateway

Nginx

Microservices

SSO module

Solution
The Remote Diagnosis Application assesses diagnostic data of telematics-enabled vehicles to help
technicians in remotely identifying issues. Technicians scan the vehicle identification number and
check for faults recorded on the electronic control unit.

Features required for diagnosis such as circuit diagrams, machine parts required for fixing faults, and
possible causes are made available for an easy and quick diagnosis. The solution comprises the
following components:

The microservices-based solution was deployed on the cloud by integrating functionalities such as
auto-scaling, auto-deployment, quality gate analysis, and health alerts.

While the app integrates with multiple third-party services that have their own quota and spike
arrest, data caching helps avoid repeated API calls ensuring faster response time.

To ensure support for thousands of users across the globe, the application was load tested at
various ranges.

Leveraging Kubernetes’ extended features for Horizontal Pod Autoscaling (HPA), we provided an
auto-scalable backend.

HPA, PDB (Pods Distribution Budget), and rolling update strategies helped achieve zero downtime
during deployment.

Deployments are triggered automatically in respective environments through Jenkins jobs with
minimal developer effort.

Each of the multiple deployment lines for development, staging, UAT, and production require peer
review and confirmation before being pushed through.

Grafana and Prometheus are integrated in the backend for real-time monitoring and visualization.

Services such as notifications and documentation (audit protocol) require real-time consolidation
of data across numerous third-party services.

Error handling and thread-based approach ensure wait time per user is minimal.

Prior to our involvement, the client had a prototype of the Remote Diagnosis Application which
was developed based on a monolithic architecture. Deployment was a huge task that involved
uploading 2.5 GB of the build package. By moving to microservices architecture, QBurst was able
to deliver a flexible and scalable alternative that was much faster to deploy.

 The Remote Diagnosis Application was also made available to Independent Service Providers
(ISPs) in compliance with EU regulations. Ten APIs were developed for ISPs, six for the remote
diagnostic system, and four for the remote maintenance system. Using these APIs, vehicles can
be diagnosed remotely as well as from the service center.

One of the challenges of moving to a microservices-based architecture is that there are many
components that need testing. QBurst played a crucial role in identifying issues during migration.
Initially we released a minimal set of features focusing primarily on quick-tests. All diagnoses were
recorded and stored on the device. However, the cost involved in clearing the native applications
prior to each release was a challenge. We were able to completely eliminate this problem with a
PWA version developed with new features.

Key Challenges

Another challenge was storage and sharing of vehicle data with multiple users within the workshop.
Data was stored on the device with no link to the workshop or technicians. We effected extensive
architectural changes to manage data inputs from multiple users assigned to one vehicle. This
prevented mismatch of data when multiple users simultaneously worked on a vehicle.

Concerns raised by customers were not recorded in the app and diagnosis was purely based on
fault codes of the quick-test. This led to another significant change in the architecture. We
implemented a concern-based approach wherein most features are linked to customer concerns.
Following this, the entire diagnosis was based on the premise of concerns raised by customers.

Vehicle Features Predictions

Release Notes

Circuit Diagrams Authorization

Vehicle Condition Parts

Warning/
Error Messages

Microservices

N

Remote
Diagnosis App

Service
Gateway

MG1

MG2

Microgateway

Hybrid Cloud

Redis CacheCloud Storage

Mongo DB

Maria DB

The application begins a diagnostic session either by manual entry of the vehicle number or by
scanning the vehicle ID. Scanning is a core feature of the Remote Diagnosis Application.

Quick-test: Analyzes the vehicle’s current state by viewing the control unit and associated fault
code of the vehicle

Guided test: Based on this analysis, a guided test provides a list of parts that can be used to fix
issues associated with the fault code

Repair forecast: Generates predictions based on big data analysis of the fault codes associated
with similar cases; presents a list of parts, labor involved, and recommendations to resolve faults

Key Features

Essential parts: Technicians can add parts that can be used to resolve faults in the vehicle, which
can be shared via email to supervisors to initiate purchase orders

Historical data: The historical data associated with fault occurrence helps identify repeating faults

Messages: Warnings to display any active errors in the vehicle

Vehicle build info: An overview of make and model

Reset fault code: Clears all the current faults in a vehicle and triggers a new quick-test to identify
remaining issues

Link to client portal: Records of vehicles brought in for service are pushed to the portal; one-way
sync of data enables technicians to start with diagnosis right away instead of manually entering
customer concerns into the app

Vehicle health and maintenance: Displays information related to service due date, mileage, and
on-the-road data

Repair forecast: Consumes an API for predictive analysis and uses feedback mechanism to
improve prediction accuracy

Diagnostic capability: Meant for vehicles that support telediagnosis and provides an overview of
capabilities of the current vehicle

Handover: Cases that cannot be diagnosed through the app can be handed over to the diagnosis team

Recording symptoms: A symptom tree represents the classification of an issue in the vehicle (for
example, body > chassis > door > rear > left > doorknob), and possible solutions are retrieved

Tips: Tips based on symptoms documented for an issue help in quick resolution of the issue

Documentation/audit-protocol: Technicians can document diagnostic findings in detail when
cases are closed, which is then displayed under appropriate sections in a PDF document, giving
workshop supervisors a clear idea of work done

Media protocol: Technicians add annotated images and diagrams that enrich the documentation

Symptom software updates: Lists available software updates for electronic control units based on
manufacturer code and symptoms

Compatible with iOS, Android, and PWA
platforms

Zero downtime during deployment achieved
through an orchestrated pipelining of Sonar,
Jenkins, Docker, and K8s

CI/CD pipeline for deployment in dev
environments

Adobe Analytics and AppDynamics for
analytics

Microservices to deploy features ensures
flexibility and ease of maintenance

Authentication and authorization at every
layer ensures data protection

Highlights

Generates PDF report of the diagnostic session

Grafana and Prometheus for analysis of
different tenants

ELK stack for analysis of gateway and
database logs

23 languages supported

Java Angular

Tesseract

Kubernetes

MariaDB MongoDB

iOS, Android

Adobe Analytics ELK stack

Docker

PWA

AppDynamics

Grafana, Prometheus Jenkins

Technologies

APIs: Spring boot, OpenID Connect, Apigee Microgateway, Kubernetes, Jenkins, Git Quay,
DHC SonarQube, PostgreSQL, Docker, Filebeat

The application was released to market as scheduled and was well received by workshop
technicians because of its usability and ease of access

Achieved radical simplification in analysis and diagnosis of vehicular faults

Improved customer satisfaction with remote
support and reduced maintenance costs as a result
of preventive diagnostics

Increased productivity enabling technicians to
diagnose vehicles on their smartphones

Replaced bulky diagnosis kit, availability of which
was limited to one per workshop, with a pocket-
friendly tool

PWA version compatible with all smartphones

Our effort to identify, document, and devise
solutions (in the design phase) to mitigate
scenarios related to concurrent usage was
appreciated by the client

Business Benefits

USA l UK l UAE l INDIA l SINGAPORE l AUSTRALIA l JAPAN

www.qburst.com l info@qburst.com

